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Objective

Evaluate two Reynolds-stress turbulence models (RSMs) available in the 
FUN3D unstructured CFD code: the SSG/LRR RSM and the Wilcox RSM. 
This work supports NASA’s Revolutionary Computational Aerosciences 
(RCA) Technical Challenge: 

Identify and down-select critical turbulence, transition, and numerical 
method technologies for 40% reduction in predictive error against 
standard test cases for turbulent separated flows, evolution of free shear 
flows and shock-boundary layer interactions on state-of-the-art high 
performance computing hardware.
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Overview

• The FUN3D code

• The turbulence models

• Test cases – simple yet contain relevant flow physics

– Transonic diffuser

– Supersonic axisymmetric compression corner

– Compressible planar shear layer

– Subsonic axisymmetric jet

• Summary and conclusions
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The FUN3D Code
• General purpose flow solver and design tool 

• Developed by NASA Langley

• Wide variety of numerical schemes, gas models, turbulence models and 
boundary conditions

• Unstructured grids

• 2nd-order finite volume, node-centered

• Roe scheme (default)

– Other methods available

• SA, SST-V, SSG/LRR RSM and Wilcox RSM used

• fun3d.larc.nasa.gov

The Wind-US Code
• General purpose flow solver
• Developed and supported by NASA Glenn, the Arnold Engineering Development Center 

(AEDC), The Boeing Co.
• Structured and unstructured grids
• 2nd-order accurate finite volume, node-centered, Roe (structured) and 

HLLE(unstructured) – default
• SA, SST-V, EASM models used
• www.grc.nasa.gov/winddocs

http://www.grc.nasa.gov/winddocs
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Turbulence Models

• Spalart-Allmaras (SA) one-equation model

• Standard incompressible version

• No trip term

• freestream boundary condition  

• Menter’s shear-stress transport (SST-V) two-equation model

• Vorticity-based production term

• Two-equation explicit algebraic Reynolds stress model (EASM) (shear 

layer case)
• Derived from reduced form of Reynolds stress transport equations

• Similar to the Boussinesq approximation but includes terms that are 

nonlinear in the strain and rotation rate tensors

• Seven-Equation Omega-Based Full Reynolds Stress Turbulence Models

• Wilcox Stress-Omega Full Reynolds Stress Model (Wilcox RSM)

• SSG/LRR-Omega Full Reynolds Stress Model (SSG/LRR RSM)
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Turbulence Models, cont’d
Seven-equation omega-based full Reynolds Stress models

- Blended Speziale-Sarkar-Gatski/Launder-Reece-Rodi pressure-strain model

𝜕(𝜌 𝜏𝑖𝑗 )

𝜕𝑡
+

𝜕 𝜌 𝜏𝑖𝑗 𝑢 𝑘 

𝜕𝑥𝑘

= −𝜌 𝑃𝑖𝑗 − 𝜌 Π𝑖𝑗 + 𝜌 𝜀𝑖𝑗 − 𝜌 𝐷𝑖𝑗 − 𝜌 ℳ𝑖𝑗  

𝜕(𝜌 ω)

𝜕𝑡
+

𝜕 𝜌 𝜔𝑢 𝑘 

𝜕𝑥𝑘

= α𝜔

𝜔

𝑘 

𝜌 𝑃𝑘𝑘

2
− 𝛽𝜔𝜌 𝜔2 +

∂

∂𝑥𝑘

  𝜇 + 𝜎𝜔

𝜌 𝑘 

𝜔
 

𝜕𝜔

𝜕𝑥𝑘

 + 𝜎𝑑

𝜌 

𝜔
max⁡ 

𝜕𝑘 

𝜕𝑥𝑘

𝜕𝜔

𝜕𝑥𝑘

, 0  

Π𝑖𝑗   =  −  𝐶1𝜀 +
1

2
𝐶1

∗𝑃𝑘𝑘  𝑎 𝑖𝑗 + 𝐶2𝜀  𝑎 𝑖𝑘𝑎 𝑘𝑗 −
1

3
𝑎 𝑘𝑙 𝑎 𝑘𝑙𝛿𝑖𝑗  +  𝐶3 − 𝐶3

∗ 𝑎 𝑘𝑙𝑎 𝑘𝑙  𝑘 𝑆 𝑖𝑗
∗      

+ 𝐶4𝑘  𝑎 𝑖𝑘𝑆 𝑗𝑘 + 𝑎 𝑗𝑘 𝑆 𝑖𝑘 −
2

3
𝑎 𝑘𝑙𝑆 𝑘𝑙 𝛿𝑖𝑗  + 𝐶5𝑘  𝑎 𝑖𝑘𝑊 𝑗𝑘 + 𝑎 𝑗𝑘 𝑊 𝑖𝑘   

SSG/LRR-Omega Full Reynolds Stress Model:

𝜏𝑖𝑗 ≝ −𝑢𝑖′′𝑢𝑗 ′′

Wilcox Stress Omega Full Reynolds Stress Model:

- Uses a Launder-Rodi-Reece pressure-strain model

6 Reynold’s Stress Equations and 1 Length Scale Equation:



Overview

• The FUN3D and Wind-US codes

• The SSG/LRR and Wilcox Full Reynolds stress models

• Test cases – simple yet contain relevant flow physics

– Transonic diffuser

– Supersonic axisymmetric compression corner

– Compressible planar shear layer

– Subsonic axisymmetric jet

• Summary and conclusions
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Test Cases
Transonic Diffuser – Strong Shock Case

Constant Area Duct Added – 10 Throat Heights Long

54,854 

Grid Points
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Test Cases
Sajben Diffuser – Strong Shock Case

FUN3D RSM Results

Wall Pressure
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Test Cases
Sajben Diffuser – Strong Shock Case

FUN3D RSM Results

Velocity
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Test Cases
Sajben Diffuser – Strong Shock Case

FUN3D RSM Results

Axial Turbulence Intensity



Test Cases
Sajben Diffuser – Strong Shock Case

Summary of Results

• The two stress-omega models give very similar results.

• Axial turbulence intensity profiles show better agreement with 

experiment than the SA and SST models.

• The velocity profiles show that the SA model does the best job of 

predicting the separation, however the stress-omega models are better 

at predicting the velocity profiles in the downstream portion of the duct.  



Experiment
• J. Brown et al, NASA Ames 

• Mach 2.85,   Re = 16 x 106/m

• Data

– LDV

• Mean velocities

• Reynolds stresses

– Surface static pressures

– Interferometry

– Schlieren

– Oil flow
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- Dunagan, S.E., Brown, J.L. and Miles, J.B. ,” Interferometric Data for a Shock/Wave Boundary-Layer 

Interaction,” NASA TM 88227, Sept. 1986.

- Brown, J.D., Brown, J.L. and Kussoy, M.I., “A Documentations of Two- and Three-Dimensional 

Shock-Separated Turbulent Boundary Layers,” NASA TM 101008, July, 1988.

- *Settles, G.S., and Dodson, L.J., “Hypersonic Shock/Boundary-Layer Interaction Database NASA CR 

177577, April 1991

- Wideman, J., Brown, J., Miles, J., and Ozcan, O., “Surface Documentation of a 3-D Supersonic 

Shock-Wave/Boundary-Layer Interaction,” NASA TM 108824, 1994

*primary data source

Test Cases
30o Axisymmetric Compression Corner



Mach Contours
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Test Cases
30o Axisymmetric Compression Corner

Grid and Flow Features

Grid

- 1265 axial points, 729 radial points

- SA, SST-V single-cell axisymmetric 

wedge grid (922,185 points) 

- RSMs 90-degree, 17 circumferential 

points (15,478,857 points)

- Orthogonal to the wall, y+=0.2

- Axial lines parallel to shock



Pressure

Test Cases
30o Axisymmetric Compression Corner

Skin Friction
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Velocity Profiles – Upstream of Flare
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Test Cases
30o Axisymmetric Compression Corner



Velocity Profiles – Downstream of Flare Corner
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Test Cases
30o Axisymmetric Compression Corner



Turbulent Shear Stress – Upstream of Flare
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Test Cases
30o Axisymmetric Compression Corner



Turbulent Shear Stress – Downstream of Flare Corner
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Test Cases
30o Axisymmetric Compression Corner
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• The Wilcox and SSG-LRR RSMs behaved quite differently.  

• The Wilcox RSM and the SST-V model have similar behavior

• The Wilcox RSM predicted the correct pressure rise on the compression 

surface, whereas the SSG-LRR RSM  significantly under-predicted the 

pressure rise. 

• The SA model did the best job of predicting the separation location and the 

pressure rise.  It also did the best job at predicting the velocity profiles.

• The Wilcox RSM may have an advantage at predicting the shear stress 

profiles.

• Conclusion

While the Wilcox RSM may offer some slight benefits in predicting the shear stress 

profiles for this case. The SA model gave the best results overall.  The SSG-LRR 

RSM performed poorly. 

Test Cases
30o Axisymmetric Compression Corner

Summary of Results



Experiment
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Test Cases
Compressible Mixing Layer

• Goebel, Dutton, & Gruber- Univ.of Illinois (1991)

• Test Case 2, Convective Mach No., Mc = 0.46, Re = 12x106/m

• Data available: 

• LDV Mean velocities and Reynolds Stress

• Growth Rates

• Schlieren

- Goebel, S.G. and Dutton, J.C., “Experimental Study of Compressible Turbulent Mixing Layers,” AIAA Journal, vol. 29, 

no. 4, pp. 538-546, April, 1991.

- Goebel, S.G. “An Experimental Investigation of Compressible Turbulent Mixing Layers,” Ph.D. Thesis, Dept. of Mech. 

and Ind. Eng., Univ. of Illinois., Urbana, Ill., 1990.

-Gruber, M.R. and Dutton, J.C., “Three-Dimensional Velocity Measurements in a Turbulent Compressible Mixing Layer,” 

AIAA Paper 92-3544, July 1992

Stream 2

Stream 1

Primary (Stream 1) Secondary (Stream 2)

Mach 1.91 1.36

P(kpa) 49 49

T(K) 334 215

U(m/s) 700 399

a(m/s) 366 293

ρ(kg/m3) 0.51 0.79



Mean Velocity 
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Test Cases
Compressible Mixing Layer



Streamwise Turbulence Intensity
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Test Cases
Compressible Mixing Layer



Transverse Turbulence Intensity
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Test Cases
Compressible Mixing Layer



Turbulent Shear Stress
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Test Cases
Compressible Mixing Layer



Shear Layer Thickness
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Test Cases
Compressible Mixing Layer

Shear layer thickness definition:

The distance, b, between transverse locations where:



Summary of Results
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Test Cases
Compressible Mixing Layer

• Results using FUN3D with the SST-V model agree well with the Wind-US SST-V results. 

• All of the models compute the velocity profiles in the mixing layer well. 

• The Wilcox and SSG/LRR RSM and the EASM turbulence models are better than the SST-V 

model at predicting the turbulence quantities u’u’, v’v’ and u’v’. 

• The Wilcox and SSG/LRR RSM models give very similar results for v’v’ and u’v’.  For u’u’, 

the Wilcox RSM model does slightly better.

SIGNIFICANCE
The Wilcox and the SSG/LRR full Reynolds stress turbulence models give improved turbulence 
predictions over the SST-V two equation turbulence model for this supersonic mixing layer case. 



Experiment
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Test Cases
Axisymmetric Subsonic Jet

- Bridges, J. and Wernet, M. P., "Establishing Consensus Turbulence Statistics for Hot Subsonic Jets," 

AIAA Paper 2010-3751, 16th AIAA/CEAS Aeroacoustics Conference, Stockholm, Sweden, June 2010.

- Bridges, J. and Wernet, M. P., "The NASA Subsonic Jet Particle Image Velocimetry (PIV) Dataset," 

NASA/TM-2011-216807, November 2011. 



Grids – From TMR  (turbmodels.larc.nasa.gov)
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Test Cases
Axisymmetric Subsonic Jet



Centerline Profiles
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Test Cases
Axisymmetric Subsonic Jet

Axial Velocity Turbulent Kinetic Energy



Radial Profiles
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Test Cases
Axisymmetric Subsonic Jet

x-Velocity y-Velocity 

(Subsequent profiles shifted by  𝑢 𝑈𝑗𝑒𝑡 = 1.0 (Subsequent profiles shifted by  𝑣 𝑈𝑗𝑒𝑡 = 0.04 



Radial Profiles
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Test Cases
Axisymmetric Subsonic Jet

Turbulent Shear Stress Turbulent Kinetic Energy 

(Subsequent profiles shifted by  𝑢′𝑣′ 𝑈𝑗𝑒𝑡
2 = 0.01 (Subsequent profiles shifted by  𝑘 𝑈𝑗𝑒𝑡

2 = 0.03 
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Axisymmetric Subsonic Jet

• The SSG/LRR model shows some benefits over the SA and
SST-V models at predicting the mixing.

Summary of Results

Test Cases
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Summary
• Two RSMs available in the FUN3D code, the Wilcox and the SSG/LRR, were

evaluated for four test cases: a transonic diffuser, a supersonic axisymmetric

compression corner, a supersonic compressible planar mixing layer, and a subsonic

axisymmetric jet.

• RSM results were compared with solutions computed using the SA and SST-V

turbulence models, and an EASM (planar mixing layer).

• Transonic diffuser - results were somewhat inconclusive as to the benefits of the

RSMs

• The supersonic axisymmetric compression corner – the SA model was best for

computing the pressure rise and the separation location and length. The Wilcox RSM

gave results similar to SST-V, and the SSG/LRR RSM severely over-predicted the

onset of separation. All models had difficulty computing the boundary layer profiles

and turbulence quantities in the separated region, and no additional benefit was

gained by using RSMs.

• Supersonic planar mixing layer – the RSMs gave the best predictions of the

turbulence intensity, turbulent shear stress and shear layer thickness

• Subsonic axisymmetric jet – SSG/LRR predicted the mixing of the core velocity the

best
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Conclusions

• The four cases examined are flows that are challenging for current

turbulence models because they contain mixing, shock waves and/or

separation.

• Overall, the RSMs showed benefit over the SA and SST-V models for the

planar mixing layer and the axisymmetric jet flow, and may be useful for

future nozzle calculations.

• While the cases examined are challenging flows, they are still relatively

simple in geometry and flow features.

• More complex flow cases may reveal more benefits of the RSMs and are

recommended for future study.
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Questions?
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Extra Slides
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Turbulence Models, cont’d
• Seven-equation omega-based full Reynolds Stress models:

• SSG/LRR RSM:

- Blended Speziale-Sarkar-Gatski/Launder-Reece-Rodi pressure 

strain model

𝜕(𝜌 𝜏𝑖𝑗 )

𝜕𝑡
+

𝜕 𝜌 𝜏𝑖𝑗 𝑢 𝑘 

𝜕𝑥𝑘

= −𝜌 𝑃𝑖𝑗 − 𝜌 Π𝑖𝑗 + 𝜌 𝜀𝑖𝑗 − 𝜌 𝐷𝑖𝑗 − 𝜌 ℳ𝑖𝑗  

𝜕(𝜌 ω)

𝜕𝑡
+

𝜕 𝜌 𝜔𝑢 𝑘 

𝜕𝑥𝑘

= α𝜔

𝜔

𝑘 

𝜌 𝑃𝑘𝑘

2
− 𝛽𝜔𝜌 𝜔2 +

∂

∂𝑥𝑘

  𝜇 + 𝜎𝜔

𝜌 𝑘 

𝜔
 

𝜕𝜔

𝜕𝑥𝑘

 + 𝜎𝑑

𝜌 

𝜔
max⁡ 

𝜕𝑘 

𝜕𝑥𝑘

𝜕𝜔

𝜕𝑥𝑘

, 0  

Π𝑖𝑗   =  −  𝐶1𝜀 +
1

2
𝐶1

∗𝑃𝑘𝑘  𝑎 𝑖𝑗 + 𝐶2𝜀  𝑎 𝑖𝑘𝑎 𝑘𝑗 −
1

3
𝑎 𝑘𝑙 𝑎 𝑘𝑙𝛿𝑖𝑗  +  𝐶3 − 𝐶3

∗ 𝑎 𝑘𝑙𝑎 𝑘𝑙  𝑘 𝑆 𝑖𝑗
∗      

+ 𝐶4𝑘  𝑎 𝑖𝑘𝑆 𝑗𝑘 + 𝑎 𝑗𝑘 𝑆 𝑖𝑘 −
2

3
𝑎 𝑘𝑙𝑆 𝑘𝑙 𝛿𝑖𝑗  + 𝐶5𝑘  𝑎 𝑖𝑘𝑊 𝑗𝑘 + 𝑎 𝑗𝑘 𝑊 𝑖𝑘   

Production𝑃𝑖𝑗 = 𝜏𝑖𝑘

𝜕𝑢 𝑗

𝜕𝑥𝑘

+ 𝜏𝑗𝑘

𝜕𝑢 𝑖

𝜕𝑥𝑘

 

𝜌𝜀𝑖𝑗 =
2

3
𝜌𝛿𝑖𝑗 𝜀 Dissipation
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Turbulence Models, cont’d

Anisotropy𝑎 𝑖𝑗 = −
𝜏𝑖𝑗

𝑘 
−

2

3
𝛿𝑖𝑗  

Strain Rate Tensor𝑆 𝑖𝑗 =
1

2
 
𝜕𝑢 𝑖

𝜕𝑥𝑗

+
𝜕𝑢 𝑗

𝜕𝑥𝑖

  

 
Traceless Strain Rate Tensor𝑆 𝑖𝑗

∗ = 𝑆 𝑖𝑗 −
1

3
𝑆 𝑘𝑘 𝛿𝑖𝑗  

𝑊 𝑖𝑗 =
1

2
 
𝜕𝑢 𝑖

𝜕𝑥𝑗

−
𝜕𝑢 𝑗

𝜕𝑥𝑖

  Averaged Rotation Tensor

SSG/LRR RSM

𝜌𝐷𝑖𝑗 = −
𝜕

𝜕𝑥𝑘

  𝜇 𝛿𝑘𝑙 − 𝐷
𝜌𝜏𝑘𝑙𝑘 

𝜀
 

𝜕 𝜏𝑖𝑗  

𝜕𝑥𝑙

  
Generalized 

Diffusion

𝜌𝐷𝑖𝑗 = −
𝜕

𝜕𝑥𝑘

  𝜇 −
𝐷

𝐶𝜇

𝜇𝑇 
𝜕 𝜏𝑖𝑗  

𝜕𝑥𝑘

  𝐷 = 0.5𝐶𝜇𝐹1 + 
2

3
0.22 1 − 𝐹1  

Simple diffusion model:

with
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Turbulence Models, cont’d

𝜙 =  𝛼𝜔 , 𝛽𝜔 , 𝜎𝜔 , 𝜎𝑑  Blending equation for :

𝜙 = 𝐹1𝜙 𝜔 +  1 − 𝐹1 𝜙
(𝜀) 𝐹1 = tanh 𝜁4  

𝜁 = 𝑚𝑖𝑛

 
 
 
 
𝑚𝑎𝑥  

 𝑘 

𝐶𝜇𝜔𝑑
,

500𝜇

𝜌 𝜔𝑑2
 ,

4𝜎𝜔
(𝜀)

𝜌 𝑘 

𝜎𝑑
(𝜀) 𝜌 

𝜔
𝑚𝑎𝑥  

𝜕𝑘 

𝜕𝑥𝑘

𝜕𝜔
𝜕𝑥𝑘

, 0 𝑑2
 
 
 
 
 

SSG/LRR RSM

D

LRR
(ω)

0.5556 0.075 0.5 0 1.8 0 0 0.8 0

SSG
(ε)

0.44 0.0828 0.856 1.712 1.7 0.9 1.05 0.8 0.65 0.625 0.2 0.22

Blending and closure coefficients for SSG/LRR RSM
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Turbulence Models, cont’d
Wilcox RSM

𝜕(𝜌 𝜏𝑖𝑗 )

𝜕𝑡
+

𝜕 𝜌 𝜏𝑖𝑗 𝑢 𝑘 

𝜕𝑥𝑘

= −𝜌 𝑃𝑖𝑗 − 𝜌 Π𝑖𝑗 +
2

3
𝛽∗𝜌 ω𝑘𝛿𝑖,𝑗 +  

∂

∂𝑥𝑘

  𝜇 + 𝜎∗ 
∂𝜏𝑖𝑗

∂𝑥𝑘

  

𝜕𝜌 𝜔

𝜕𝑡
+

𝜕(𝜌𝜔𝑢 𝑗 )

𝜕𝑥𝑗

= 𝛼
𝜌 𝜔

𝑘
𝜏𝑖𝑗

𝜕𝑢 𝑖

𝜕𝑥𝑗

− 𝛽𝜌 𝜔2 + 𝜎𝑑

𝜌 

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗

+
∂

∂𝑥𝑘

  𝜇 + 𝜎𝜇𝑇 
𝜕𝜔

𝜕𝑥𝑘

  

𝛱𝑖𝑗   =  𝛽∗𝐶 1𝜔  𝜏𝑖𝑗 +
2

3
𝑘𝛿𝑖𝑗  − 𝛼  𝑃𝑖𝑗 −

2

3
𝑃𝛿𝑖𝑗  − 𝛽  𝐷𝑖𝑗 −

2

3
𝑃𝛿𝑖𝑗  − 𝛾 𝑘  𝑆𝑖𝑗 −

1

3
𝑆𝑘𝑘 𝛿𝑖𝑗   

𝑃 =
1

2
𝑃𝑘𝑘  

 

𝜇𝑇 = 𝜌 𝑘 𝜔  
with,

Closure coefficients for Wilcox RSM

0.5 0.6 0.0708

𝐷𝑖𝑗 = 𝜏𝑖𝑘

𝜕𝑢 𝑘

𝜕𝑥𝑗

+ 𝜏𝑗𝑘
𝜕𝑢 𝑘

𝜕𝑥𝑖
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Turbulence Models, cont’d
Wilcox RSM, cont’d

𝜎𝑑 =

 
 
 

 
 0,

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗

≤ 0

1

8
,

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗

> 0

 

𝑓𝛽 =
1 + 85Χ𝜔

1 + 100Χ𝜔

, Χ𝜔 =  
𝑊𝑖𝑗 𝑊𝑗𝑘 𝑆 𝑘𝑖

 𝛽∗𝜔 3
  𝑆 𝑘𝑖 = 𝑆𝑘𝑖 −

1

2

𝜕𝑢 𝑚

𝜕𝑥𝑚

𝛿𝑘,𝑖  
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Test Cases
Sajben Diffuser – Strong Shock Case

Wind-US and FUN3D Results

Velocity



Mach Contours
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Test Cases
30o Axisymmetric Compression Corner

Pressure Contours – Close-up of Corner


